Skip to main content

Digitalisierung im Gesundheitswesen

Das Gesundheitswesen steht heute vor einer Vielzahl von Herausforderungen, die eine kontinuierliche Weiterentwicklung erfordern, um den steigenden Anforderungen und dem Fachkräftemangel gerecht zu werden. Die Digitalisierung von Prozessen ist dabei eine vielversprechende Antwort auf diese Herausforderungen. In diesem Beitrag erfahren Sie, wie die Digitalisierung Prozesse im Gesundheitswesen optimiert und dadurch Kosten eingespart und Personal entlastet werden können.

Was bedeutet digitales Gesundheitswesen?

Die Digitalisierung im Gesundheitswesen bezieht sich auf die Integration digitaler Technologien und Lösungen, um die Effizienz, Qualität und Zugänglichkeit der Gesundheitsversorgung zu verbessern.

Dabei können die Anwendungen sehr vielseitig sein. Neben elektronischen Patientenaktien, Telemedizin, roboterassistierte Chirugie sorgen auch IoT-Lösungen wie Wearables und intelligente Gebäude für mehr Effizienz im Gesundheitswesen. Als Experten für das Internet der Dinge (IoT) werden wir im Folgenden näher darauf eingehen, wie IoT-Lösungen im Gesundheitswesen Mehrwert schaffen können.

Bevor wir uns den konkreten Anwendungen von IoT-Lösungen im Gesundheitswesen zuwenden, ist es wichtig, das Konzept des IoT zu verstehen. IoT bedeutet „Internet der Dinge“ und bezieht sich auf die Vernetzung physischer Geräte und Objekte über das Internet. Diese Geräte und Objekte sind mit Sensoren, Aktoren und Kommunikationstechnologien ausgestattet, die es ihnen ermöglichen, ohne direkte menschliche Interaktion Daten zu sammeln, Informationen auszutauschen und auf Befehle zu reagieren.

Digitale Infrastruktur schafft mehr Überblick

Bei der Digitalisierung im Gesundheitswesen haben IoT-Lösungen das Potenzial, die Effizienz, Sicherheit und Qualität der Patientenversorgung zu verbessern. Denn durch die Integration intelligenter Sensoren, die Daten in Echtzeit erfassen, und den Einsatz modernster Kommunikationstechnologien ermöglichen IoT-Lösungen eine nahtlose Vernetzung von medizinischen Geräten, Einrichtungen und medizinischem Personal. Durch diese intelligente Vernetzung entsteht eine digitale Infrastruktur, die einen umfassenden Überblick über den Gesundheitszustand von Patienten, den Betrieb medizinischer Einrichtungen und die Nutzung von Ressourcen bietet. Mit diesem Wissen können Entscheidungsträger fundierte, datengestützte Entscheidungen treffen und Prozesse optimieren. Die folgenden praktischen Anwendungen zeigen, wie das IoT alltägliche Abläufe durch die Vernetzung von Objekten optimiert.

1. Präzise Temperaturüberwachung: Schutz für Medikamente, Proben und Lebensmittel

Die vom Hersteller angegebenen Temperaturbereiche von Arzneimitteln dürfen bei der Lagerung in Apotheken nicht über- oder unterschritten werden – das schreibt die Apothekenbetriebsordnung (ApBetrO §4, §29) vor. Ähnlich verhält es sich bei Lebensmitteln. Durch die am 1. Januar 2006 in Kraft getretene EU-Verordnung (EG) Nr. 852/2004 über Lebensmittelhygiene, ist für jeden die Einrichtung eines HACCP Konzepts Pflicht, der Lebensmittel behandelt oder in Verkehr bringt. HACCP-Konzepte sind interne Eigenkontrollsysteme um die Lebensmittelsicherheit für den Verbraucher garantieren zu können und sehen ebenfalls die Dokumentation und Kontrolle von Temperaturen vor.

Häufig werden die Kontrollen manuell durchgeführt und dokumentiert, was einen hohen Zeit- und Arbeitsaufwand darstellt, ein erhöhtes Risiko an Fehlern bietet sowie die Auswertung erschwert. Hierbei schaffen IoT-fähige Sensoren Abhilfe. Denn sie ermöglichen eine präzise und automatisierte Überwachung von Temperaturen in Medikamentenschränken, Laboren und Kantinen. Die intelligenten Sensoren erfassen Temperatur und Luftfeuchtigkeit und senden kontinuierlich Daten an zentrale Plattformen. Das medizinische Personal und Verwaltungsmitarbeiter erhalten umgehend Benachrichtigungen, wenn die Temperaturen außerhalb des festgelegten Bereichs liegen. Dadurch können sie sofort reagieren, um die Integrität von Medikamenten, Proben und Lebensmitteln zu gewährleisten. Die Genauigkeit der Temperaturüberwachung trägt zu einer verbesserten Patientensicherheit und einer optimierten Ressourcennutzung bei.

2. Patientenüberwachung

Wearables in Form von Armbanduhren und Sensoren können Patienten überwachen und wichtige Gesundheitsdaten wie Herzfrequenz, Blutdruck, Sauerstoffsättigung und Aktivitätsniveau erfassen. Diese Daten können in Echtzeit an das medizinische Personal übermittelt werden, um eine kontinuierliche Überwachung und ein rechtzeitiges Eingreifen bei Veränderungen des Gesundheitszustandes oder bei Stürzen etc. zu ermöglichen.

3. Smart-Buildings: Automatisierte Gebäude

Im Gebäudebereich gibt es zahlreiche IoT-Anwendungen, die die Gebäudeeffizienz, den Energieverbrauch, die Raumnutzung und die Ressourcennutzung optimieren können. Beispielsweise können Beleuchtung und Klimatisierung automatisch an den Bedarf angepasst werden, um Energie zu sparen. Darüber hinaus können IoT-Sensoren erkennen, welche Räume gerade genutzt werden und welche leer stehen. So lässt sich die Raumnutzung optimieren und sicherstellen, dass Ressourcen effizient genutzt werden. Intelligente Kameras und Sensoren können außerdem dazu beitragen, die Sicherheit in medizinischen Einrichtungen zu erhöhen. Sie können potenzielle Sicherheitsrisiken wie zum Beispiel unbefugter Zugang erkennen und das Personal rechtzeitig informieren, um angemessen zu reagieren.

4. Vernetzte medizinische Geräte

Die Vernetzung medizinischer Geräte durch IoT-Technologien ist eine der fortschrittlichsten Anwendungen im Gesundheitswesen und bietet zahlreiche Vorteile. Durch die Integration von Sensoren und Kommunikationsfunktionen in medizinische Geräte können diese miteinander und mit anderen IT-Systemen in der Einrichtung verbunden werden. Dadurch entsteht ein nahtloses Netzwerk, das wichtige medizinische Daten in Echtzeit erfasst, überwacht und austauscht. Dies ermöglicht es, ein umfassendes Bild vom Zustand eines Patienten zu erhalten und fundierte klinische Entscheidungen zu treffen. Dies wiederum kann die Patientensicherheit erhöhen und die Qualität der medizinischen Versorgung verbessern.

5. Überwachung von Luftqualität

IoT Sensoren überwachen die Luftqualität in Räumen. Dabei erfassen sie die Temperatur, Luftfeuchtigkeit, CO2 sowie flüchtige Organische Verbindungen. So können Infektionsrisiken frühzeitig erkannt werden und entsprechende Maßnahmen eingeleitet werden. Echtzeitwarnungen ermöglichen dabei schnelle Reaktionen oder die automatisierte Regelung von Luftzufuhr und- Austausch.

Fazit

Die Digitalisierung im Gesundheitswesen und die Integration von IoT-Lösungen bieten ein enormes Potenzial, um die Effizienz, Qualität und Sicherheit der Patientenversorgung zu verbessern. Von der präzisen Temperaturüberwachung von Medikamenten, Proben und Lebensmitteln in Apotheken bis hin zur Echtzeitüberwachung der Vitalwerte von Patienten durch vernetzte medizinische Geräte – die Möglichkeiten sind vielfältig. Auch das automatisieren und vernetzen von Gebäuden sorgt für die effizientere Nutzung von Ressourcen effizienter die Erhöhung von Sicherheit. Die Überwachung der Raumluftqualität durch IoT-Sensoren trägt dazu bei, Infektionsrisiken frühzeitig zu erkennen und entsprechende Schutzmaßnahmen zu ergreifen. Digitalisierung und IoT-Lösungen spielen somit eine wichtige Rolle bei der Transformation des Gesundheitswesens hin zu einer vernetzten, effizienten und sicheren Umgebung für Patienten und medizinisches Personal.

5 Schritte für ein erfolgreiches IoT Projekt

Ob in Smart Cities, Industrie 4.0 oder Logistik – das Internet der Dinge (IoT) bietet großes Potenzial zur Optimierung von Prozessen in Unternehmen. Dabei stellt die Integration des IoT aufgrund seiner Komplexität Unternehmen häufig vor Herausforderungen. Um Kosten zu sparen und eine reibungslose Umsetzung zu gewährleisten, empfiehlt es sich, bereits in der Konzeptionsphase einen IoT-Spezialisten hinzuzuziehen. Denn auf das Internet der Dinge spezialisierte Unternehmen wie SenseING verfügen über das nötige Know-how und den entsprechenden Überblick, um Projekte erfolgreich umzusetzen.

In diesem Blog-Beitrag haben wir fünf wichtige Schritte zusammengefasst, die Ihnen helfen werden, Ihr IoT-Projekt zum Erfolg zu führen.

1. Definition des Projektziels

Vor dem Start eines IoT-Projekts ist es wichtig, klare Ziele zu definieren und den Bedarf sorgfältig zu analysieren. Dabei sollten Ziele wie Effizienzsteigerung, Kostensenkung oder Optimierung der Lieferkette identifiziert werden. Wichtig ist auch, dass die Ziele realistisch und messbar sind. Unterscheiden sie zwischen kurzfristigen, mittelfristigen und langfristigen Zielen, wobei Sie sich zunächst auf die kurzfristige Ziele fokussieren sollten. Nur so können Sie am Ende des Projekts feststellen, ob Sie Ihre Ziele erreicht haben oder nicht. Je präziser Ihr Projektziel ist, desto besser können Sie Ihre Ressourcen und Strategien darauf ausrichten. Insgesamt gilt also: Nehmen Sie sich ausreichend Zeit für die Definition Ihrer Ziele und setzen Sie diese klar und präzise um – damit legen Sie den Grundstein für einen Projekterfolg.

2. Auswahl der richtigen Technologie

Nachdem Sie Ihre Ziele definiert haben, ist es wichtig, die richtige IoT-Plattform und die entsprechenden IoT-Geräte und -Infrastruktur auszuwählen. Dabei sollten Sie sich die folgenden Fragen stellen: Welche Funktionalitäten benötigen wir? Welche Anforderungen haben wir an Sicherheit und Datenschutz? Brauchen wir eine skalierbare Lösung für zukünftiges Wachstum? Muss die Infrastruktur bereits für ein flächendeckendes Rollout geeignet sein? Welche Schnittstellen werden benötigt?

Es gibt viele verschiedene Plattform- und Geräteanbieter auf dem Markt, daher ist es ratsam, einen Vergleich durchzuführen und mehrere Optionen zu evaluieren. Achten Sie auch darauf, ob die Anbieter über Erfahrung in Ihrer Branche verfügen oder spezielle Branchenanforderungen erfüllen können.

Beachten Sie, dass die Konnektivität der Komponenten eine wichtige Rolle bei der Auswahl der Technologien spielt. Stellen Sie sicher, dass die verschiedenen Komponenten des IoT miteinander kompatibel sind. Kreativworkshops mit Ihren Technikern sind dabei sehr hilfreich.

Ein weiterer wichtiger Aspekt bei der Auswahl einer IoT-Plattform und -Infrastruktur ist die Integration mit Ihren bestehenden Systemen. Eine nahtlose Integration ermöglicht nicht nur eine bessere Kontrolle über das Projektmanagement, sondern spart auch Zeit und Kosten.

Zusammenfassend lässt sich sagen, dass es entscheidend ist, die Wahl der richtigen IoT-Plattform und -Geräte sorgfältig abzuwägen, da sie essenziell für den Erfolg des Projekts sind.

3. Sichern und schützen Sie Ihr Netzwerk

Aufgrund der Vielzahl vernetzter Geräte im Internet der Dinge ist es besonders wichtig, Ihr Netzwerk vor Cyberangriffen zu schützen. Hier sind einige Maßnahmen, die Sie ergreifen können:

  • Überprüfen Sie regelmäßig, ob alle Geräte und Komponenten in Ihrem Netzwerk über die neuesten Sicherheitsupdates verfügen. Die Hersteller veröffentlichen regelmäßig Patches und Updates, um bekannte Sicherheitslücken zu schließen. Halten Sie Ihre Geräte daher stets auf dem neuesten Stand.
  • Trennen Sie Ihr Netzwerk in verschiedene Segmente oder VLANs, um die Ausbreitung von Angriffen zu begrenzen. Dadurch wird verhindert, dass ein kompromittiertes Gerät das gesamte Netzwerk gefährdet.
  • Richten Sie eine Firewall ein, um unbefugten Zugriff auf Ihr Netzwerk zu verhindern. Konfigurieren Sie die Firewall so, dass nur der erforderliche Datenverkehr zugelassen wird.
  • Richten Sie Überwachungstools ein, um verdächtige Aktivitäten in Ihrem Netzwerk zu erkennen. Überprüfen Sie regelmäßig die Protokolle und Ereignisse, um mögliche Sicherheitsverletzungen frühzeitig zu erkennen.
  • Stellen Sie sicher, dass regelmäßige Backups und Datensicherungen automatisiert durchgeführt werden

Durch die Umsetzung dieser Sicherheitsmaßnahmen können Sie Ihr Netzwerk wirksam schützen und das Risiko von Cyberangriffen verringern.

4. Implementieren und Testen Sie Ihre Anwendung

Setzen Sie Ihren Projektplan durch Testen und Implementieren der erforderlichen IoT-Geräte und -Infrastrukturen in einem prototypischen Aufbau um. Arbeiten Sie mit Ihrem Team oder externen Experten zusammen, um die Hardware, Software und Netzwerkkomponenten zu integrieren. Testen Sie das System gründlich, um sicherzustellen, dass es reibungslos funktioniert und die gewünschten Ergebnisse liefert.

Beachten Sie, dass das Testen Ihrer Anwendungen ein kontinuierlicher Prozess ist. Das bedeutet, dass Sie Ihre Anwendungen regelmäßig aktualisieren und verbessern müssen, um sicherzustellen, dass sie Ihren Anforderungen entsprechen.

5. Roll-out, Optimierung & Skalierung

Nachdem Sie Ihre IoT-Anwendungen getestet und validiert haben, ist es an der Zeit, Ihr Projekt in die auszurollen. Analysieren Sie Ihre Daten sorgfältig und identifizieren Sie Schwachstellen oder Bereiche, in denen Verbesserungen möglich sind. Nutzen Sie diese Erkenntnisse, um Ihre Anwendungen zu optimieren und ihre Leistung zu verbessern.

Skalierbarkeit ist ein wichtiger Faktor für den langfristigen Erfolg Ihres IoT-Projekts. Planen Sie die Skalierbarkeit von Anfang an mit ein, um sicherzustellen, dass Ihre Anwendungen mit einer steigenden Anzahl von Nutzern Schritt halten können. Stellen Sie sicher, dass Ihre IoT-Plattform und Netzwerkarchitektur ausreichend skalierbar sind, um zukünftiges Wachstum zu bewältigen.

Fazit: So erreichen Sie ein erfolgreiches IoT-Projekt

Ein erfolgreiches IoT-Projekt ist kein einfaches Unterfangen. Es erfordert eine sorgfältige Planung, eine klare Vision und ein tiefes Verständnis der technischen Aspekte. Mit den fünf Schritten in diesem Artikel können Sie jedoch sicherstellen, dass Ihr Projekt auf dem richtigen Weg ist. Definieren Sie zunächst Ihre Ziele und stellen Sie sicher, dass diese realistisch und messbar sind. Wählen Sie dann die geeignete IoT-Technologie aus, die Ihren Anforderungen entspricht und Ihnen die Flexibilität bietet, die Sie benötigen. Schützen Sie Ihr Netzwerk vor Cyber-Bedrohungen und sorgen Sie dafür, dass Ihre Daten sicher sind. Testen Sie Ihre Anwendungen sorgfältig und stellen Sie sicher, dass sie reibungslos funktionieren. Optimieren und skalieren Sie Ihr Projekt kontinuierlich, um sicherzustellen, dass es erfolgreich bleibt.

Eine Person, über die Schulter fotografiert, hält einen LoRa-Tracker in der Hand. Im Hintergrund ist ein Laptop mit einer Tabelle und einer Landkarte zu sehen.

Unser professioneller IoT Service für Ihren Erfolg!

Nutzen Sie unser Know-how als IoT-Experten und profitieren Sie von unserem umfassenden Angebot aus Hardware, Software und Service – von der Installation bis zur Analyse Ihrer Daten.

Energieautarke Temper­atur Datenlogger für die Lebensmittellogistik

SenseING bringt energieautarke Temperatur Datenlogger mit integriertem Solarpanel auf den Markt. Allein durch die Beleuchtung in Fahrzeugen und Lagerhallen erzeugt der Logger genügend Energie, um autark zu arbeiten.

Um die lückenlose Einhaltung der Kühlkette bei temperaturempfindlichen Gütern zu gewährleisten und Risiken zu minimieren, sind Logistikunternehmen verpflichtet, die Temperatur in regelmäßigen Abständen zu kontrollieren und aufzuzeichnen. Bisher geschieht dies oft manuell, was einen hohen Personalaufwand bedeutet und Fehlerquellen birgt.

Der Datenlogger lädt sich über sein Solarpanel selbst auf.

Autarker Temperatur Datenlogger für lückenlose Datenerfassung

Der neue Temperaturlogger mit der Bezeichnung „SLC-PV“ des Karlsruher Unternehmens dokumentiert die Temperatur und die relative Luftfeuchtigkeit auf der Ladefläche von Fahrzeugen. Die große Besonderheit des Loggers ist seine autarke Energieversorgung. Dank eines Solarmoduls lädt der Logger seinen Energiespeicher selbstständig auf und das auch ohne Tageslicht. Für den autarken Betrieb benötigt der Logger lediglich 250 Lux und kommt somit bereits mit der Beleuchtung in Hallen oder in Fahrzeugen aus. Lästige Batteriewechsel gehören damit der Vergangenheit an und mögliche Datenverluste sind ausgeschlossen. Logistikunternehmen können sich somit auf eine kontinuierliche Datenerfassung ohne manuelles Eingreifen oder Ablesen der Temperaturwerte verlassen.

Die automatisierte Datenerfassung des Loggers ermöglicht eine lückenlose Übertragung der gesammelten Informationen. Am Lagerort angekommen, werden die Daten automatisch über den Funkstandard LoRaWAN übermittelt, die die Daten in die Cloud übertragen, wo sie analysiert, visualisiert und verwaltet werden können. So können Unternehmen ihre Temperatur- und Feuchtigkeitswerte einfach und effizient überwachen und automatisierte Berichte erstellen. „Darüber hinaus bietet SenseING die Übernahme der erfassten Daten in bestehende Kundensysteme über standardisierte Schnittstellen an“, erklärt Geschäftsführer Sven Kruse.


Die Integration der autarken Temperaturlogger ist einfach und unkompliziert. Die Logger werden vorkonfiguriert ausgeliefert und können in wenigen Schritten in Betrieb genommen werden. Dabei können die Logger auch problemlos zur Temperaturdokumentation in Lagerhallen eingesetzt werden.

Automatisiert Auflagen erfüllen

Die automatische Datenübertragung ermöglicht eine lückenlose Dokumentation der Temperaturwerte während des gesamten Transport- und Lagerprozesses. Somit können Logistikunternehmen nicht nur den personellen Aufwand und die Fehlerquellen reduzieren, sondern auch die Effizienz und Zuverlässigkeit ihrer Temperaturüberwachung verbessern. Zudem unterstütz die dauerhafte Dokumentation die Logistikunternehmen bei ihren Qualitätsmanagement-Audits.


„Alles in allem bieten wir mit unserem autarken Datenlogger Unternehmen die Möglichkeit, ihre Effizienz zu steigern, Kosten zu senken und ihre Betriebsabläufe zu optimieren“, so Kruse abschließend.

Der autarke Temperatur Datenlogger mit integriertem Solarpanel ist ab sofort verfügbar. Darüber hinaus bietet SenseING weitere Logging-Lösungen entlang der Lieferkette an. Unternehmen, die ihre Logistikprozesse optimieren und ihre Temperatur- und Feuchtewerte zuverlässig überwachen möchten, sind herzlich eingeladen, weitere Informationen anzufordern.

IoT-Architektur: Die Ebenen des Internet of Things

Eine Einführung in die verschiedenen Ebenen der IoT-Architektur und wie sie zusammenarbeiten um die physische mit der digitalen Welt zu vernetzen.

Das Internet der Dinge (Internet of Things, IoT) ist eine Technologie, welches es ermöglicht, Objekte in einer noch nie da gewesenen Art und Weise zu vernetzen. Die erfassten Daten, die daraus resultieren, ermöglichen es uns bessere Entscheidungen zu treffen oder Prozesse zu automatisieren. Doch beim IoT handelt es sich nicht um eine einzige Technologie, sondern um viele technologische Ebenen, welche im Zusammenspiel das Internet der Dinge bilden. In diesem Artikel erfahren Sie mehr über die Architektur des IoTs und seine verschiedenen Ebenen.

Die Ebenen der IoT-Architektur

Das Internet der Dinge ist vielseitig und umfasst eine Reihe von Komponenten und Technologien, welche zusammen­arbeiten, um die Vernetzung von Objekten zu ermöglichen. Dabei unterscheiden wir grob in Ebenen in der physischen Welt und Ebenen in der digitalen Welt. Dazwischen steht eine Konnektivitäts-Ebene, welche die beiden Welten miteinander verbindet. Im Folgenden werden wir genauer auf die Ebenen sowie die dazugehörigen Komponenten und Technologien eingehen.

Physische Welt

Man benötigt in den meisten Fällen zusätzliche Hardware, um ein Objekt zu vernetzen und somit in das Internet der Dinge einzubinden. Diese Hardware wird am Objekt angebracht, um die physische Welt, also alle realen Objekte, miteinander zu vernetzen.

Physische Objekte

Am Anfang steht immer ein zu vernetzendes Objekt. Dabei handelt es sich im industriellen Kontext in den meisten Fällen um Fahrzeuge, Transportbehälter, Geräte und Werkzeuge, Produktionsmaschinen oder Förderbänder. Die Vernetzung dieser Objekte ermöglicht eine bessere Überwachung und Steuerung von Prozessen sowie die optimierte Wartung und Instandhaltung.

Sensoren und Aktoren

Um Daten eines physischen Objekts oder seiner Umgebung zu erfassen, benötigt es Sensoren, welche entweder in Form von Trackern, Datenloggern oder Beacons an den Objekten angebracht werden oder sich bereits in der Elektronik eines Objekts befinden. Die Sensoren können dabei je nach Bedarf verschiedene physikalische Kenngrößen erfassen, von Temperatur und Feuchtigkeit bis hin zu Bewegung und Vibration.

Unter Aktoren versteht man Komponenten welche anhand von erfassten Daten, Aktionen auslösen also Objekte steuern. Dabei können die Aktoren je nach Bedarf verschiedene Formen annehmen. So können sie beispielsweise als Schalter für die Aktivierung der Klimaanlage bei erhöhter Temperatur eingesetzt werden oder als Motor, welcher bei Regen Fenster schließt.

Konnektivität

Die Konnektivitäts-Ebene ist die Ebene, die die Geräte untereinander vernetzt oder mit dem Internet verbindet, um die Daten zu übertragen. Hierzu kommen je nach Anwendungsfall verschiedene Netzwerkprotokolle wie WiFi, Bluetooth , NB-IoT oder LoRaWAN zum Einsatz. Das Ziel dieser Ebene ist es, die physische mit der digitalen Welt zu verbinden und eine zuverlässige sowie sichere Datenübertragung zu gewährleisten. Einige Lösungen verfügen selbst über die Möglichkeit, Daten über das Mobilfunknetz zu senden. Andere Lösungen nutzen hierzu Zwischeninstanzen wie beispielsweise Smartphones oder Gateways.

Digitale Welt

Die digitale Welt der IoT-Architektur ermöglicht die Verarbeitung und Analyse der erfassten Daten. Dadurch gewinnen Unternehmen nützliche Erkenntnisse und können daraus Maßnahmen ableiten, was wiederum Prozesse optimiert, Kosten spart oder neue Geschäftsfelder identifiziert.

Analytics

Die Analytics oder auch Datenanalyse ist ein wichtiger Bestandteil des IoT. Denn hier werden aus den großen Datenmengen nützliche Erkenntnisse und wertvolle Daten gewonnen. Diese Erkenntnisse werden dann dazu verwendet, Entscheidungen zu treffen oder Trends hervorzusagen.

Um Analytics erfolgreich einzusetzen, werden die Daten zunächst in einem Datenspeicher gesammelt, gespeichert und bereinigt. Anschließend kommen Algorithmen und Methoden aus dem Bereich des maschinellen Lernens und der künstlichen Intelligenz zum Einsatz, um beispielsweise den Wartungsbedarf von Maschinen zu identifizieren oder Ausfälle hervorzusagen.

Digitale Services

Die abschließende Ebene der digitalen Services führt die Möglichkeiten der vorhergehenden Ebenen zusammen, strukturiert sie und stellt sie in sogenannten IoT-Plattformen dar. Dabei werden die Daten meistens in übersichtlichen Dashboards in Web-Applikationen oder Apps zur schau gestellt. Erst hier wird der eigentliche Kundennutzen generiert. Denn hier erhält der Kunde den vollumfänglichen Überblick über seine vernetzten Objekte. So werden hier beispielsweise die Standorte von Fahrzeugen visualisiert, Maschinen ferngesteuert oder Daten visualisiert um Trends und Muster zu erkennen. Anhand dieser Informationen können dann die betroffenen Prozesse optimiert werden, neue Produkte und Dienstleistungen entwickelt werden und letztendlich bessere Entscheidungen getroffen werden.

Dashboards ermöglichen eine schnelle und übersichtliche Darstellung der wichtigsten Kennzahlen und Trends

Die IoT-Architektur – komplex und erfolgsentscheidend

Das Internet der Dinge ist ein spannendes Feld welches viele Möglichkeiten bietet, um Prozesse zu automatisieren und Entscheidungen aufgrund von Echtzeitdaten zu treffen. Die IoT-Architektur mit ihren verschiedenen Technologien und Komponenten macht das Internet der Dinge jedoch zu einem komplexen Ökosystem. Da nur wenige Unternehmen über das notwendige Fachwissen verfügen, ist eine Zusammenarbeit mit einem erfahrenen IoT-Partner sowie eine sorgfältige Planung und Abstimmung für eine erfolgreiche Implementierung unerlässlich.

IoT im Supply Chain Management

Das Supply Chain Management kann durch den Einsatz von IoT-Geräten grundlegend verändert werden. Welche Herausforderungen dabei bestehen und wie das IoT die Lieferkette verbessern kann, erfahren Sie in diesem Artikel.

  1. Herausforderungen im Supply Chain Management
  2. Wie kann das Internet of Things die Lieferkette verbessern?
  3. Beispiele für die Implementierung von IoT-Geräten in der Lieferkette
  4. Fazit

Die Supply-Chain, zu deutsch Lieferkette beschreibt das Netzwerk an Unternehmen, welche dafür sorgen, dass Güter ununterbrochen von A nach B gelangen. Durch das Wirtschaftswachstum sowie die Globalisierung der letzten Jahre müssen genau diese Unternehmen immer vernetzter und effizienter agieren. Durch die Digitalisierung bestehen zahlreiche Möglichkeiten für die Optimierung und Automatisierung von Prozessen.

Herausforderungen im Supply Chain Management

Lieferketten sind das Rückgrat der Wirtschaft. Genau wie im menschlichen Körper, indem alle Organe und Systeme zusammenarbeiten müssen, um fehlerfrei zu funktionieren, verhält es sich auch in der Supply Chain. Damit eine Lieferung erfolgreich am Ziel ankommt, müssen die Akteure aus den Bereichen Beschaffung, Produktion, Distribution sowie der Absatzplanung einwandfrei zusammenarbeiten. Dabei bestehen verschiedene Herausforderungen in der Planung, Koordination und Kontrolle des Warenflusses:

  • Transparenz und Sichtbarkeit
    Aufgrund der hohen Aufkommen kann es schwierig für Unternehmen sein, zu Wissen, wo und in welchem Zustand sich eine Lieferung gerade befindet.
  • Reaktionsfähigkeit
    Um Lieferausfälle vorzubeugen, müssen Unternehmen in der Lage sein, schnell auf Störungen reagieren zu können.
  • Kostenkontrolle
    Lager-, Transport- und Verarbeitungskosten müssen minimiert werden, um die Rentabilität von Unternehmen zu steigern und es somit wettbewerbsfähiger zu machen.
  • Identifizierung von Problemen & Störungen
    Unternehmen müssen in der Lage sein Störungen in der Lieferkette sowie Qualitätsprobleme deutlich zu identifizieren und zu minimieren.

Wie kann das Internet of Things die Lieferkette verbessern?

Die Logistik wird bereits als hochgradig digitalisiert eingeordnet, denn in der Regel sind einige Bereiche der Lieferkette bereits miteinander vernetzt. Das bildet bereits eine gute Grundlage, sodass neue Technologien wie IoT-Geräte schnell und einfach in bestehende Prozesse implementiert werden können. Das Internet of Things (IoT) hat sich als ein leistungsfähiges Werkzeug erwiesen, um industrielle Prozesse zu optimieren, denn IoT schafft vor allem eins: Transparenz.

Laut aktuellen Studien von Forschungsinstituten wie Statista sollen bereits im Jahr 2030 bis zu 30 Milliarden vernetzter Geräte im Betrieb sein [1] und für mehr Transparenz in Prozessen sorgen. Aufgrund der Komplexität in Lieferketten bieten diese ein besonderes großes Potenzial, Prozesse miteinander zu vernetzen und dabei zu optimieren bzw. zu automatisieren.

Ausstattung einer Mehrwegtransport-Verpackung mit einem LoRa Tracker

Um mehr Transparenz zu erhalten, können Unternehmen durch den Einsatz von IoT-Sensoren und -Geräten beispielsweise Lieferungen nachverfolgen. Dabei lassen sich zeitgleich die Umgebungsbedingungen wie zum Beispiel Temperatur und Luftfeuchtigkeit überwachen. Darüber hinaus lässt sich durch die Überwachung von Kenngrößen auch feststellen, ob eine Lieferung unsachgemäß behandelt oder beschädigt wurde. Das ermöglicht es Unternehmen, die Qualität ihrer Lieferungen zu gewährleisten. Zudem werden mögliche Probleme in der Lieferkette identifiziert und können beseitigt werden.

Durch den Einsatz von IoT-Geräten können außerdem Echtzeit-Inventare abgebildet werden. Das ermöglicht es den Unternehmen, schnell auf Veränderungen im Lagerbestand zu reagieren und somit Überbestände sowie Engpässe zu vermeiden. Zudem können IoT-Geräte automatisiert Bestellungen aufgeben, wenn Bestände knapp werden.

Beispiele für die Implementierung von IoT-Geräten in der Lieferkette

  • Tracker können an Lieferungen, Ladungsträgern oder Transportverpackungen angebracht werden. Sie geben Auskunft über Lagerbestände oder die Position des Gegenstands oder der Lieferung.
  • Datenlogger können an Waren in Fahrzeugen oder Transportbehältern wie zum Beispiel Thermobehältern angebracht werden. Sie werden genutzt, um beispielsweise Temperatur und Luftfeuchtigkeit automatisiert zu dokumentieren.
  • Smarte Lagerregale & Waagen können verwendet werden, um Bestellprozesse zu automatisieren oder Alarmierungen bei knappen Lagerbeständen zu versenden, um so die Lagerhaltung zu optimieren.

Fazit

Das IoT hat das Potenzial, das Supply Chain Management grundlegend zu verändern. Durch mehr Transparenz in den Lieferketten können die Akteure ihre Effizienz steigern und Kosten senken. Zudem lassen sich durch den Einsatz von IoT-Geräten neue Geschäftsfelder erschließen, indem Unternehmen bspw. Zusatzservices für ihre Lieferungen anbieten. Alles in allem lässt sich festhalten, dass das Internet der Dinge in den kommenden Jahren eine wichtige Rolle in den Lieferketten dieser Welt spielen wird.

Quellen:

[1] Statista: Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2021, with forecasts from 2022 to 2030

Spenden für das Studio 913

Ihm Rahmen des dritten Firmenfests sammelte die SenseING GmbH Spenden für das 913 Studio

Am 1. Oktober lud die SenseING GmbH Geschäftspartner und Unterstützer zum dritten Firmenfest ein, welches nun offiziell als Tradition gilt. Gemäß dem Anlass wurde ein ebenso traditionelles Fest veranstaltet – ein Oktoberfest. Auf gar keinen Fall durfte dabei die jährliche Spendenaktion fehlen, welche SenseING 2021 zum ersten mal ins Leben rief. Denn das Fest, welches als Zeichen der Dankbarkeit für die gute Zusammenarbeit und Unterstützung etabliert wurde, soll auch genutzt werden um gemeinsam Gutes zu tun. So nutzte SenseING die Aufmerksamkeit um in diesem Jahr Spenden für das 913 Studio – Verein zur Förderung der Bildung, Kunst und Kultur e.V. zu sammeln.

Geschäftsführer Sven Kruse übergibt einen Spendenscheck an Vereinsvorsitzenden Ralf Türbach. Die beiden stehen von einer Graffitwand.
Sven Kruse (links im Bild) übergibt den Spendenscheck an Vereinsvorsitzenden Ralf Türbach.

Mit Musik das Selbstbewusstsein stärken

Als Folge der Corona-Pandemie musste das Vereinsangebot stark eingeschränkt werden. Mit dem gespendeten Geld möchte das 913 Studio nun das Angebot wieder erweitern. So soll im Frühjahr 2023 der Kurs „Einführung in die Aufnahme- und Musikproduktion“ anlaufen. Der Kurs richtet sich konkret an Kinder und Jugendliche zwischen 7 und 20 Jahren, welche in mehreren Terminen die Basics der Aufnahme- und Musikproduktion vermittelt bekommen. Darüber hinaus werden gemeinsam echte Aufnahmen von Podcasts, Texten oder Liedern produziert. Das Ziel des Kurses: Die eigene CD mit den selbst produzierten Werken. Gefördert wird dadurch vor allem das Selbstbewusstsein sowie die Medien- und Sprachkompetenz der Kinder und Jugendlichen. Für die Teilnehmer*innen ist der Kurs dabei kostenlos.

Digitales Geräte­manage­ment geht in die Serien­produktion

Die Serienproduktion der Trackinglösung träck läuft auf Hochtouren. Bereits im Oktober erfolgen die ersten Auslieferungen.

Digitales Gerätemanagement erfordert vorallem eins: Transparenz. Mehr Transparenz in Prozessen zu schaffen gilt als das Hauptziel SenseING´s. Dabei setzt SenseING auf IoT-Gesamtlösungen welche vorkonfiguriert geliefert werden und sich in wenigen Schritten in Betrieb nehmen lassen. So auch die Trackinglösung träck welche im speziellen für den Einsatz in der Baubranche entwickelt wurde. Künftig wird die aus drei Komponenten bestehende Lösung für mehr Transparenz auf Baustellen und Bauhöfen sorgen, denn mit Ihr lassen sich Kleingeräte, wie Rüttelplatten, Kompressoren etc. als Live-Inventaren nachverfolgen, Verschreibungen automatisieren, Suchzeiten reduzieren und so die Produktivität steigern.

Das Prinzip ist ganz einfach: Alle zu trackenden Geräte und Werkzeuge erhalten einen Tracker (Sender). Baustellen und Lager/Bauhöfe werden mit Gateways (Empfängern) ausgestattet. Die Tracker tauschen gesammelte Daten über die Funktechnologie LoRa mit dem Gateway aus. Das Gateway wiederum sendet die Daten unter Verwendung des Mobilfunknetztes in eine IoT-Plattform und über standardisierte Schnittstellen in bestehende Systeme.

Digitales Gerätemanagement: Ein Tracking Sensor wird an den Griff einer Rüttelplatte angebracht.


Im Mittelpunkt der Lösung steht der gerade 40×40 mm kleine Tracker, welcher nun tausendfach produziert wird. Er beinhaltet Klima- und Bewegungssensoren, welche es ermöglichen Aussagen über den Zustand und die Auslastung der Geräte abzuleiten. Besonders mit der Batterielaufzeit glänzt der kompakte Tracker, denn dank des geringen Energiebedarfs erreicht er Batterielaufzeiten von bis zu vier Jahren.

Sie brauchen ein umsetzbares Gerätemanagement? Kontaktieren Sie uns jetzt gleich für mehr Informationen.